Carbon-13 Isotope Effect for Carbon Dioxide Formation in the Reaction of Liquid Formic Acid with Uranium Trioxide

by M. Zieliński¹, A. Zielińska¹, N. Ogrinc², H. Papiernik-Zielińska¹ and I. Kobal²

 ¹Faculty of Chemistry, Jagiellonian University, Ingardena Str.3, 30-060 Cracow, Poland, Fax: (48-12) 634-05-15
²J. Stefan Institute, SI-1000 Ljubljana, Jamova Str. 39, Slovenia Tel: + 386 61 1773 900 Fax No.: +386 61 177 38 11, 219

(Received November 10th, 2000; revised manuscript January 10th, 2001)

Continuing our investigations of the ¹³C kinetic isotope effect for dehydration of liquid formic acid (FA) in the presence of different additives accelerating or inhibiting the decarbonylation of FA [1,2,3], we noticed that formic acid mixed under vacuum with uranium trioxide powder (provided by BDH-Chemicals-England) produces large quantities of carbon dioxide already at room temperature. The decarbonylation of FA proceeds with measurable rate in the presence of solvated UO₃ above 343 K only. Since this was unexpected result we examined the ¹³C KIE for formation of both products of FA decomposition, CO₂ and CO, between 20–130°C. The isotopic results for decarbonylation of liquid FA in the presence of UO₃, UO₄ and UO₂ (HCOO)₂ and for oxidation of HCOOH with fresh UO₄ have been submitted to Polish J. of Chemistry as fully understood at the chemical and isotope effect level. The delta PDB and the related carbon-13 kinetic isotope effects for carbon dioxide formed immediately after mixing 7.687 g of uranium trioxide (BDH England, poole 6588750) with 10 cm³ of liquid FA (Merck) under vacuum are presented in Table 1. The evolution of CO₂ practically ceased at 23°C after 21 h and only traces of CO₂ have been extracted from r.v. during the subsequent 40 h at 298 K. The slow but measurable production of carbon dioxide has been observed between 343–393 K (exp. U2-U9). The violent production of carbon dioxide at room temperature (after 5 minutes of induction period) followed by "gentle boiling" has been observed also in the two supplementary series of reactions of 4.715 g of UO3 with 10 cm³ of HCOOH, carried out in vacuum reaction vessel at 18°C (291 K) and then, in the reaction of 8.374 g of UO₃ with 10 cm³ of HCOOH/at 30.3°C (303.5 K). The amount of carbon dioxide produced at room temperature was proportional to UO₃ used in oxidation experiments (U-1: 0.9308 mmoles of $CO_2/7.686$ g $UO_3 = 0.1211$ at 23°C/21 h reaction time). No production of CO₂ was observed in the decomposition of liquid FA in the presence of fresh uranyl formate obtained in the reaction of UO₃ with liquid formic acid.

The room temperature oxidations of formic acid with solid uranium trioxide powder were accompanied by large 13 C isotope fractionation. 13 C KIE = 1.0487 for 0.445 mmoles of CO₂ obtained during 4 h oxidation of 10 cm³ of FA at 291 K (R_{so}/R_{nf} = 1.0487, δ (PDB) = -68.23 ± 0.08). The subsequent portions of CO₂ were produced in the higher 343.16–384.16 K temperature interval with ¹³C KIE located in the range 1.028-1.031. Fractionation of carbon-13 in the course of oxidation of FA with UO₃ is much higher than ¹³C KIE's, observed in the oxidation of liquid FA with freshly prepared uranium peroxide (located in the range 1.016–1.027 in the temperature interval 294–393 K). Interpretation of the ¹³C KIE data concerning the oxidation of FA with commercial uranium trioxide is a less straightforward task than interpretation of ¹³C KIE's in the oxidation of FA with UO₄ or decarbonylation of this acid in the presence of UO3 or UO4. The fast initial oxidation of FA with UO3 BDH England provides carbon dioxide characterized by $(R_{so}/R_{pf}) = 1.0478_3$; a value found in decarbonylation reactions, which involve ${}^{13}C-{}^{16}O$ bond rupture in the rate determining step. This is an uncommon phenomenon in oxidation reactions, where the carbon-hydrogen bonds are usually exposed to the attack by the oxidizer and where large deuterium and tritium KIE's are observed. Two possible reasons might be suggested as responsible for this large ¹³C KIE: The uranium trioxide powder, produced by BDH Chemicals England, is contaminated slightly with highly reactive fluorine derivatives, which attacking FA substitute for the hydroxyl oxygen in the process require rupture of the carbon-oxygen bond in the rate determining step. The second phenomenon leading to the rupture of the carbon-oxygen bond of FA might be related with induced by alpha radiolysis impairments in the solid UO_3 reacting with penetrating the solid formic acid molecules. The number of reactive defects is proportional to the solid trioxide, used in the oxidative reaction. The new scientific example, 23/U-1, presented in Table 1, is a challenge for isotope chemists [4].

The ¹³C KIEs in the oxidation of formic acid with uranium trioxide are higher than the ¹³C KIEs in the oxidation of formic acid with uranium peroxide, especially in the case of initial room temperature oxidation of HCOOH with commercial UO₃. Assuming that the uranium trioxide is a pure compound with a solid structure modified by alpha radiation defects only, two explanations of the experimental data presented in Table 1 can be given. Carbon dioxide is produced in a two-step reaction with the first step involving the rupture of the ${}^{13}C{}^{-16}O$ bond (as in decarbonylation reaction) accompanied with large ¹³C KIE. The "reactive uranium peroxide" [4] imbedded in the structure of the solid UO₃ has been suggested by us, but the freshly prepared UO₄ (used as the oxidant of liquid formic acid) does not show this ¹³C isotope effect anomaly. The second pathway invoked to rationalize the fast initial oxidation of liquid FA is the oxidation of FA with alpha radiation defects consisting of " UO_2^{2+} vacancies" and of located nearby oxidizing species like O_2^{2-} or O_3^{2-} , etc. Formate anions, HCOO⁻, react with vacancies and the properly oriented and immobilized (in the solid UO₃) species are oxidized subsequently with labile and reactive negatively charged di- or three-atom-oxygen species, as shown explicitly in equations (1,1a-e, 2a-b) and (3).

10 cm ³ with 7.686 g of uranium trioxide, UO ₃ , distributed by BDH Chemicals, England (poole 6588750).								
Reaction	mmoles of CO ₂ produced	Fraction "f"	δ (PDB) for	R (¹³ C/ ¹² C)	(k ₁₂ /k ₁₃)			
temp.°C and		of oxidation	carbon dioxide	carbon isotope	experi-			
sample no.		of FA	isolated	ratio	mental			

Table 1. Isotopic composition of carbon dioxide produced in the reaction of 265.110 mmoles of HCOOH,

temp.°C and sample no.	mmoles of CO ₂ produced	of oxidation of FA	carbon dioxide isolated	carbon isotope ratio	experi- mental
23/U-1	0.9308	0.00351	-67.46 (pf)	0.0104791 (pf)	1.0479
70.15/U-2	0.01117	0.0000423	-52.49 (pf)	0.0109803 (s0) 0.0106474 (pf)	1.0314
92.2/U-3	0.0569	0.000215	-53.49 (pf)	0.0109821 (s0) 0.0106361 (pf)	1.0325
93.3/U-4	0.1076	0.000408	-48.71 (pf)	0.0109821(s0) 0.0106898 (pf)	1.0276
101.1/U-5	0.1428	0.000542	-49.63 (pf)	0.0109822 (s0) 0.0106795 (pf)	1.0284
101.15/U-6	0.0946	0.000359	-50.82 (pf)	0.0109828 (s0) 0.0106661 (pf)	1.0298
111.0/U-7	0.0990	0.000377	-51.79 (pf)	0.0109835 (so) 0.0106552 (pf)	1.0309
17.5/U-8	0.0090	0.0000344	-50.01 (pf)	0.0109849 (so) 0.0106752 (pf)	1.0292
121.8/U-9	0.0180	0.0000690	-56.21 (pf)	0.0109872 (so) 0.0106056 (pf) 0.0109872 (so)	1.0360
				0.0107072(30)	

$$HC \xrightarrow{O} CH \xrightarrow{2} HC \xrightarrow{O} HC \xrightarrow$$

$$UO_{3} \xrightarrow{\alpha \text{ radiation, } O_{2}} UO_{2}^{2+} \text{ vacancy } + O_{3}^{2-}$$
(1)

$$U_{O_{2}}^{2\oplus} + HCOO^{\oplus} \xrightarrow{O_{1}} U - O - CH \xrightarrow{O_{3}^{2^{-}}} \stackrel{H^{+}}{\longrightarrow} CO_{2} + UO_{4} + H_{2}O$$
(1a)
$$U_{O_{2}}^{2\oplus} = U_{O_{2}}^{2} \xrightarrow{O_{1}} U \xrightarrow{O_{2}} \stackrel{O}{\longrightarrow} H \xrightarrow{O_{2}} O \xrightarrow{O^{-}} \stackrel{O}{\longrightarrow} H \xrightarrow{O_{2}} O \xrightarrow{O^{-}} O \xrightarrow{O^{+}} O \xrightarrow{O^{+} O \xrightarrow{O^{+}} O \xrightarrow{O^{+}} O \xrightarrow{O^{+}} O \xrightarrow{O^{+}} O \xrightarrow{O^{+} O$$

$$\begin{bmatrix} HCOOH_2 \end{bmatrix}^{\oplus} + 2 UO_3 \rightarrow O = U \xrightarrow{\delta_{\oplus} \delta_{\oplus}} C - H \dots O = U \xrightarrow{O} O = U \xrightarrow{\delta_{\oplus} \delta_{\oplus}} C - H \dots O = U \xrightarrow{O} O + \begin{bmatrix} 2 UO_2(OH) \rightarrow UO_2(OH)_2 + UO_2 \end{bmatrix} H^{\oplus}$$
(1d)

$$\begin{array}{c} \overset{2 \circledast}{UO_2 + 2 \operatorname{HCOO}^{\ominus}} \rightarrow \overset{O}{U} \xrightarrow{OC(O)H} \xrightarrow{O_3^{2^*}} & 0 \xrightarrow{OC(O)H} \xrightarrow{O_3^{2^*}} & 0 \xrightarrow{OC(O)H} \xrightarrow{OC($$

$$\begin{array}{c} O & O - C - H \\ O & O - C - H \\ O & O - C - H \end{array} + O_2^{2\Theta} \left[\begin{array}{c} O & O^{\Theta} \\ O & O - C - H \\ O & O - C - H \end{array} + CO_2 + OH^{\Theta} \right] 2 H^+ \\ + H_2O + CO_2 \\ O & O - C - H \\ O & O - C - H \\ O & O^2 - \longrightarrow \end{array} \left[U O_2^{2-} + CO_2 + OH^{\Theta} \right] 2 H^+ \\ U O_3 + CO_2 + 2 H_2O \end{array}$$
(2b)

$$\bigcup_{O} \bigcup_{OOCH} +2 \operatorname{H}_2O_2 \longrightarrow \operatorname{UO}_2(OH)_2 + 2 \operatorname{CO}_2 + 2 \operatorname{H}_2O$$
(3)

The oxidation of FA, "catalyzed" by alpha radiation of uranium, can explain the large ¹³C oxidation KIEs only if the oxidized HCOO⁻ anions had been depleted in ¹³C with respect to "bulk" formic acid in the dimmer/monomer equilibria, in the preferable formation of anions HCOO⁻ containing light ¹²C and in the diffusion of HCOO⁻ to the vacancy. The final combination of UO_2^{2+} center with HCOO⁻ is a probably fast and ir-

reversible process proceeding without ¹³C/¹²C fractionation/discrimination. After reaction of HCOO⁻ with all accessible radiation defects (that is after "saturation" of all reactive centers) the subsequent slow oxidation proceeds with smaller ¹³C KIE than in the case of initial fast room temperature oxidation of formic acid, but still larger one than in the oxidation of FA with uranium peroxide, fresh one UO₄. It is highly probable that the larger ¹³C KIE, observed in the slow oxidation of FA with UO₃ than in the oxidation of FA with UO₄, is a consequence of hydrogen being at large distance from carbon of formate in the TS in the course of its motion to the oxygen of UO₃, what causes the lack of the compensation of C-H bending vibrations contributions of H-¹³COO⁻ to ¹³C KIE. But at present state of the isotope effect studies one cannot reject the possibility that the large ¹³C fractionation, observed in the room temperature oxidation of formic acid with old uranium trioxide, UO₃, produced by BDH England, may be interpreted also as the result of two equilibrium fractionations augmenting the third kinetic one, related with ¹³C-H bond rupture. The monomer HCOOH and anion HCOO⁻ are depleted in ¹³C. The ionic character of the HCOO⁻ bonding in uranyl formate should not contribute greatly to ¹³C fractionation, but covalent bonding should. The ¹³C-¹H bond rupture in the final oxidation kinetic step is accompanied by the usual ¹³C KIE or is assisted by tunneling. Diffusion of monomeric HCOO⁻ species to the inner "radiation defects" might also contribute to the observed ¹³C fractionation. Carbon dioxide formation might be preceded by intermediate carbonates as shown in equation (1b). ¹³C KIE's in the subsequent slow oxidations of FA with UO₃ (experiments U2-U9) are located in the 1.028-1.033. The last results can be reproduced by calculation scheme, which involves besides C-H stretching vibration the deformation modes of motion assisting the transfer of two hydrogen atoms to U(VI) in the course of its reduction to U(IV). Formic anhydride might appear also to be better reducing agent than FA itself.

$$O = \bigcup_{O...HO} C = O \longrightarrow CO_2 + O = U(OH)_2 \xrightarrow{\text{HCOOH}} O = U(HCOO)_2$$

The main reaction between uranium trioxide and liquid formic acid provides directly uranyl formate at higher reaction temperature (373–400 K).

$$UO_3 + 2 HCOOH \rightarrow UO_2(HCOO)_2 + H_2O$$

Alternative oxidation path of liquid formic acid with UO₃ containing traces of highly reactive forms of uranium peroxide within its solid structure is given below:

Acknowledgments

This study has been supported by the Polish State Committee for Scientific Research Grant No C-44/99, by the Ministry of Science and Technology of the Republic of Slovenia, by the J. Stefan Institute of Ljubljana, and partly by the Faculty of Chemistry of Jagiellonian University.

REFERENCES

 Zieliński M., Zielińska A., Bernasconi S. and Papiernik-Zielińska H., J. Radioanal. Nucl. Chem., 220, 263 (1997).

2. Zieliński M., Zielińska A. and Papiernik-Zielińska H., Isotopes Environ. Health Stud., 34, 285 (1998).

3. Zieliński M., Zielińska A., Paul H. and Papiernik-Zielińska H., Polish J. Chem., 72, 2551 (1998).

4. Gordon G. and Taube H., J. Inorg. Nucl. Chem., 16, 268 (1961) and twelve references cited there.